Symbol |
Significance |
Unit |
Symbol |
Significance |
Unit |

l b h d r a s A V a, β, g, d t τ v a g ω a f n m r I, J F G g M p σ E W E P η f, μ T ΔT, Δυ a λ |
length width height thickness middle line radius distance surface volume angle time time constant velocity acceleration gravity rotational velocity rotational acceleration frequency rotation frequency mass density (mass) moment of inertia force weight standard gravity torque pressure tensile, pressure, bending stress elasticity modulus energy energy power efficiency coefficient of friction temperature temperature difference linear expansion coëfficient |
m m m m m m m m ^{2}m ^{2}rad s s m/s m/s ^{2}m/s ^{2}rad/s rad/s ^{2}Hz Hz kg kg/m ^{3}kgm ^{2}N N N/kg Nm Pa Pa N/m ^{2}J J W °C °C 1/°C |
I J U, V C R X Z G P Q S Φ H B L |
el. Current el. Current density el. Stress Capacity eff. Resistance Reactance Impedance el. Conductivity Active power Reactive power Apparent power Magnetic flux Magnetic field strength Magnetic induction Self-induction |
A A/m ^{2}V F Ω Ω Ω S W var VA Wb A/m T H |

10^{12
}10^{9
}10^{6
}10^{3
}10^{2
}1010 ^{-1
}10^{-2
}10^{-3
}10^{-6
}10^{-9
}10^{-12
}10^{-15
}10^{-18} |
tera giga mega kilo hecto deca deci centi milli micro pico nano femto atto |
T G M k h da d c m μ n p f a |
|||

1m = 39,37in = 3,81ft = 1,0936 yard 1m ^{2} = 1549,99 sqin = 10,764 sqft1m ^{3} = 61,023 cuin = 35,3145 cuft = 1,308 cuyard1l = 33,81Usfloz = 0,264Usgal = 35,196Impfloz = 0,219Impgal 1N = 0,1019kgf = 0,2248lbw -> 1kgf = 9,81N 1Pa = 1N/m ^{2} = 0,1097mmH_{2}O1bar = 10 ^{5}Pa = 1,0197kg/mm^{2} = 14,505p.s.i = 0,934T/sqft1hbar = 1,0197kg/mm ^{2} = 1450,5p.s.i = 1,54k.s.i = 0,648T/sqin1kgf/mm ^{2} = 10Mpa1at = 0,9806Pa 1J = 1Nm = 1Ws = 0,10197kgm = 0,2388cal = 0,2778.10 ^{-6}kWh = 0,737ftlb1W = 1J/s = 0,86kcal/h 1kW = 101,97kgm/s = 14,337kcal/min = 1,36pk = 1,34102BHP = 737,561ftlb/s = 0,948BTU/s 1pk = 0,75kW 1kWh = 860kcal t°f = 9/5 t°C + 32 -t°C = 5/9 .(t°F – 32) |
|||||

min h d a |
minute hour day year |
60s 60min 24h 365d |
|||

°C ° ‘ ” l t a |
Degree Celsius (angle) degree (angle) minute (angle) second litre ton are |
π/180 1°/60 1’/60 1dm ^{3}1000kg 100m ^{2} |

Translation |
Rotation |

v = s = v.t a = P = F.v F = m.a W = F.s W = .m.v ^{2} |
ω = 2.p.n v = ω.r φ = ω.t a = (tM = F.r_{a} acceleration or braking time)P = M.ω M = J.a W = M.φ W = .J.ω ^{2}J = m.i ^{2} (radius of inertia) |

Power |
Torque |

P = P = F _{R}.v (P in W – FP = M.ω _{R} in N – v in m/s)(M in Nm)ω = 2.p.n (n in Hz – ω in rad/s) |
ω = 2.p.n (n in Hz – ω in rad/s)M = F.r (M in Nm)M = (P in W) |

Energy |
Acceleration time – Delay time |

ω = 2.p.n (n in Hz – ω in rad/s)W = F.s = m.g.s (W in Nm = Ws = J – s in m – m in kg – g = 9,81m/sW = .J.^{2})ω ^{2} (J in kgm^{2} – n in Hz – ω in rad/s) |
t_{a} = (t_{a} in s – J in kgm^{2} – M_{a} in Nm) |

Moment of inertia |
Electricity |

J = 0,098.r.l. (r in kg/mJ = 0,098.r.l.( – )^{3} – l in m – d_{a} in m)J = m.r ^{2} |
P_{o} = .U.Icosφ P _{u} = .U.Icosφ.η U = I.R ΔT = |

Linear movement |
Rotational movement |

F_{r} = P _{r} = F_{r}.vM _{r} = J = m. M _{a} = .J.M _{a} = μ.m.g.r |
t_{a} = 0,2.r_{max}.n_{3}M_{ra} = M _{a3} = 0,2. J _{SI} = J_{S} + m.r^{2} |