SI-formulas for drive technology

Symbol Significance Unit Symbol Significance Unit
l
b
h
d
r
a
s
A
V
a, β, g, d
t
τ
v
a
g
ω
a
f
n
m
r
I, J
F
G
g
M
p
σ
E
W
E
P
η
f, μ
T
ΔT, Δυ
a λ
length
width
height
thickness
middle line
radius
distance
surface
volume
angle
time
time constant
velocity
acceleration
gravity
rotational velocity
rotational acceleration
frequency
rotation frequency
mass
density
(mass) moment of inertia
force
weight
standard gravity
torque
pressure
tensile, pressure, bending stress
elasticity modulus
energy
energy
power
efficiency
coefficient of friction
temperature
temperature difference
linear expansion coëfficient
m
m
m
m
m
m
m
m2
m2
rad
s
s
m/s
m/s2
m/s2
rad/s
rad/s2
Hz
Hz
kg
kg/m3
kgm2
N
N
N/kg
Nm
Pa
Pa
N/m2
J
J
W
°C
°C
1/°C
I
J
U, V
C
R
X
Z
G
P
Q
S
Φ
H
B
L
el. Current
el. Current density
el. Stress
Capacity
eff. Resistance
Reactance
Impedance
el. Conductivity
Active power
Reactive power
Apparent power
Magnetic flux
Magnetic field strength
Magnetic induction
Self-induction
A
A/m2
V
F
Ω
Ω
Ω
S
W
var
VA
Wb
A/m
T
H
1012
109
106
103
102
10
10-1
10-2
10-3
10-6
10-9
10-12
10-15
10-18
tera
giga
mega
kilo
hecto
deca
deci
centi
milli
micro
pico
nano
femto
atto
T
G
M
k
h
da
d
c
m
μ
n
p
f
a
1m = 39,37in = 3,81ft = 1,0936 yard
1m2 = 1549,99 sqin = 10,764 sqft
1m3 = 61,023 cuin = 35,3145 cuft = 1,308 cuyard
1l = 33,81Usfloz = 0,264Usgal = 35,196Impfloz = 0,219Impgal
1N = 0,1019kgf = 0,2248lbw -> 1kgf = 9,81N
1Pa = 1N/m2 = 0,1097mmH2O
1bar = 105Pa = 1,0197kg/mm2 = 14,505p.s.i = 0,934T/sqft
1hbar = 1,0197kg/mm2 = 1450,5p.s.i = 1,54k.s.i = 0,648T/sqin
1kgf/mm2 = 10Mpa
1at = 0,9806Pa
1J = 1Nm = 1Ws = 0,10197kgm = 0,2388cal = 0,2778.10-6kWh = 0,737ftlb
1W = 1J/s = 0,86kcal/h
1kW = 101,97kgm/s = 14,337kcal/min = 1,36pk = 1,34102BHP = 737,561ftlb/s
= 0,948BTU/s
1pk = 0,75kW
1kWh = 860kcal
t°f = 9/5 t°C
+ 32 -t°C = 5/9 .(t°F
– 32)
min
h
d
a
minute
hour
day
year
60s
60min
24h
365d
°C
°


l
t
a
Degree Celsius
(angle) degree
(angle) minute
(angle) second
litre
ton
are
π/180
1°/60
1’/60
1dm3
1000kg
100m2

 

Translation Rotation
v = Image570
s = v.t
a = Image571
P = F.v
F = m.a
W = F.s
W = Image19 .m.v2
ω = 2.p.n
v = ω.r
φ = ω.t
a = Image573 (ta acceleration or braking time)
M = F.r
P = M.ω
M = J.a
W = M.φ
W = Image19 .J.ω2
J = m.i2 (radius of inertia)
Power Torque
P = Image574
P = FR.v (P in W – FR in N – v in m/s)
P = M.ω (M in Nm)
ω = 2.p.n (n in Hz – ω in rad/s)
ω = 2.p.n (n in Hz – ω in rad/s)
M = F.r (M in Nm)
M = Image575(P in W)
Energy Acceleration time – Delay time
ω = 2.p.n (n in Hz – ω in rad/s)
W = F.s = m.g.s (W in Nm = Ws = J – s in m – m in kg – g = 9,81m/s2)
W = Image19 .J.
ω2 (J in kgm2 – n in Hz – ω in rad/s)
taImage576 (ta in s – J in kgm2 – Ma in Nm)
Moment of inertia Electricity
J = 0,098.r.l. Image577 (r in kg/m3 – l in m – da in m)
J = 0,098.r.l.( Image577Image578 )
J = m.r2
Po = Image579.U.I
cosφ
Pu = Image579.U.I
cosφ.η
U = I.R
ΔT = Image580
Linear movement Rotational movement
Fr = Image581
Pr = Fr.v
Mr = Image582
J = m. Image583
MaImage19 .J.Image584
Ma = μ.m.g.r
ta = 0,2.rmax.n3Mra = Image585
Ma3 = 0,2. Image586
JSI = JS + m.r2